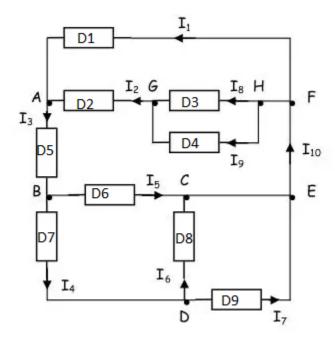
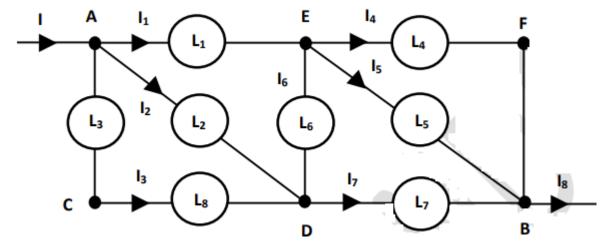
Année Académique 2024-2025


Matière : Physique Classe : S1G

Exercice 1: Intensités de courant

Le schéma ci-contre est une portion d'un circuit électrique :

On donne: $I_2 = 2$ A, $I_3 = 3$ A, $I_5 = 1.4$ A, $I_7 = 0.7$ A et $I_8 = 1.1$ A.

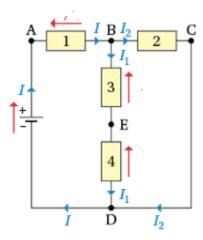

- 1) Calculer la charge et le nombre d'électrons qui circulent à travers la branche AG durant 2 min.
- 2) Nommer deux dipôles branchés en dérivation. Justifier.
- 3) Déterminer les intensités I₁, I₄, I₆, I₉ et I₁₀.
- 4) Les dipôles D₈ et D₉ sont-ils branchés en série ou en derivation?. Ces deux dipôles sont-ils identiques? Jusitifier

Exercice 2:

Le schéma ci-contre est une portion d'un circuit électrique :

On donne: I = 10 A, $I_1 = 5 \text{ A}$, $I_3 = 3 \text{ A}$, $I_4 = 1 \text{ A}$ et $I_5 = 3 \text{ A}$. Les points A et B sont branchés à une pile.

- 1) Préciser si B est relié au pôle positif ou au pôle négatif de la pile.
- 2) Calculer la charge et le nombre d'électrons qui circulent à travers le nœud A durant 2 min.
- 3) Nommer les deux lampes branchées en série. Justifier.
- 4) Nommer les deux lampes branchées en dérivation. Ces deux lampes sont-elles identiques? Jusitifier
- 5) Indiquer l'intensité du courant I₈ sortant du nœud B.
- 6) Calculer l'intensité du courant I₂.
- 7) Déterminer le sens et l'intensité du courant I₆. En déduire l'intensité du courant I₇.


Exercice 3: Circuit électrique

Le réseau représenté par le document ci-contre, comprend un seul générateur de tension continue dont les pôles (+) et (-) sont respectivement notés A et D.

On mesure les tensions suivantes:

 $U_{BA} = -6V$, $U_{AD} = 12V$ et $U_{ED} = 4V$.

- 1) Reproduire le schéma et annoter les tensions représentées.
- 2) Déterminer les tensions U_{BE} et U_{BC}.
- 3) On donne $V_A=4V$, calculer V_B et V_D .
- 4) On donne R_1 = 10 Ω , R_2 = 15 Ω , R_3 = 10 Ω , et R_4 = 20 Ω les résistances des conducteurs ohmiques (D₁), (D2), (D3), (D4), (D5) et (D₆) respectivement.

- a) Démontrer que la valeur de la résistance du conducteur ohmique équivalent à cette association est égale à 20Ω .
- b) En déduire, de deux methods, la valeur de l'intensité I qui traverse (D₁).
- c) Déterminer la valeur de l'intensité I2 qui traverse (D2) et en déduire celle de I1 qui traverse (D4).