SSCC Bikfaya.
MATH-ANALYSE

Symétrie (Fonctions)

(O, i, j) est un repère du plan d'axes (x'Ox, y'Oy) M(x; y) et M'(x'; y') sont 2 points du plan.

SV-56 Année 2023-2024

M et M' sont symétriques par rapport à	Représentations	Relations entre les coordonnées	Exemples
L'axe (x' x)	9 M	x' = x $y' = -y$	
L'axe (y' y)	M'	x' = - x y' = y	
L'origine O	H', 91	x' = - x y' = - y	
La droite (u) d'équation : y = x 1ère bissectrice des axes	3 · M 0 (u) 2	x' = y $y' = x$	
La droite (v) d'équation : y = - x 2ème bissectrice des axes	n' Ay	x' = - y y' = - x	
La droite (D) d'équation : x = a	y^ N' (□) M □ □ □ □ □	x' = 2 a - x y' = y	
Le point A (a, 0)	9 M M 2	x' = 2 a - x y' = - y	-
Le point I(a;b)	J M M M M	x' = 2 a - x y' = 2 b - y	

SV-56

Définitions:

I étant un ensemble de réels , f une fonction numérique d'une variable réelle de domaine I et (C) une courbe dans le plan.

• I est dit centré en 0 lorsque : Pour tout x élément de I alors – x est élément de I.

f est dite paire lorsque : a) I est centré en 0.

b) f(-x) = f(x)

• f est dite impaire lorsque : a) I est centré en 0.

b) f(-x) = -f(x)

(C) admet une droite (u) comme axe de symétrie lorsque le symétrique de tout pt de (C) par rapport à (u) est un pt de (C) .

(C) admet un point A comme centre de symétrie lorsque le symétrique de tout pt de (C) par rapport à A est un pt de (C) .

Théorème (admis)

f étant une fonction numérique d'une variable réelle de domaine I.

(C) est la courbe de f dans un repère orthonormé d'origine O et d'axes (x'x) et (y'y). alors

(y'y) est un axe de symétrie de (C) f est paire sur I si et seulement si f est impaire sur I si et seulement si O est un centre de symétrie de (C).

Si f(2a - x) = f(x) ou f(a - x) = f(a + x) sur I alors la droite (d): x = a est un axe de symétrie de (C). Si f(2a - x) = -f(x) sur I alors le point I(a; 0) est un centre de symétrie de (C).

Si f(2a-x) + f(x) = 2b sur I alors le point A(a; b) est un centre de symétrie de (C).

NB: La réciproque est vraie dans chaque cas à condition que les domaines soient bien précisés.

SV_SG

 $\begin{array}{ll} f\ et\ g\ sont\ des\ fonctions\ numériques\ d'1\ variable\ réelle\ .\\ (\ C\)\ :\ courbe\ de\ f\ ;\quad Dom\ f=I\\ (\ C')\ :\ courbe\ de\ g\ ;\quad Dom\ g=J \end{array}$

On suppose dans 1, 2 et 3 que: $si x \in I$ alors $-x \in J$ et dans 4 : $si x \in I$ alors $(2a-x) \in J$

		Représentations	Relations	Exemples
1	(C) et (C') symétriques par rapport à (x'x)	z' (c')	g(x) = -f(x)	
2	(C) et (C') symétriques par rapport à (y'y)	(c) (c) ×	g(-x) = f(x)	
3	(C) et (C') symétriques par rapport à l'origine O.	(c) x	g(-x) = -f(x)	
4	(C) et (C') symétriques par rapport à la droite (D): x = a	(L)	g(2a-x)=f(x)	